Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen
نویسندگان
چکیده
UNLABELLED Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase (15)N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. IMPORTANCE The methodology applied, combining transmission electron microscopy with nanoscale secondary-ion mass spectrometry (NanoSIMS) imaging of coral tissue labeled with stable isotope tracers, allows quantification and submicrometric localization of metabolic fluxes in an intact symbiosis. This study opens the way for investigations of physiological adaptations of symbiotic systems to nutrient availability and for increasing knowledge of global nitrogen and carbon biogeochemical cycling.
منابع مشابه
Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from ...
متن کاملInfluence of Sudden Column Loss on Dynamic Response of Steel Moment Frames under Blast Loading
Modeling buildings response to blast and subsequent progressive collapse interested more and more researchers during the past two decades. Due to the threat from extreme loading, efforts have been made to develop methods of structural analysis and design. In this paper, progressive collapse capacity of steel moment frames was first investigated using alternate load path method, then a nonlinear...
متن کاملCorals form characteristic associations with symbiotic nitrogen-fixing bacteria.
The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with t...
متن کاملRoles of the Symbiotic Microbial Communities Associated with Sponge Hosts in the Nitrogen and Phosphorus Cycles
Title of Dissertation: ROLES OF THE SYMBIOTIC MICROBIAL COMMUNITIES ASSOCIATED WITH SPONGE HOSTS IN THE NITROGEN AND PHOSPHORUS CYCLES Fan Zhang, Doctor of Philosophy, 2015 Directed By: Dr. Russell T. Hill, Professor, Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science Marine sponges are habitat-forming organisms in coral reefs. Many sponge ...
متن کاملEnhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin Film
To enhance photocatalytic degradation of organic pollutants, coral-like TiO2 nanostructured thin films were chemically synthesized through the sol-gel method. The fabricated thin films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), nitrogen sorption isotherms, mercury porosimetry measurements, and UV-Vis Diffuse Reflectance Spectrum (DRS). The ...
متن کامل